A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

نویسنده

  • Raheleh Zamini Department of Mathematics, Faculty of Mathematical Sciences and Computer, Kharazmi University, Thehran, Iran.
چکیده مقاله:

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, where is the left derivative of the least concave majorant of the empirical distribution function of the data. Many authors worked on this estimator and obtained very useful properties from this estimator. Grenander estimator is a step function and as a consequence it is not smooth. In this paper, we discuss the estimation of a decreasing density function by the kernel smoothing method. Many works have been done due to the importance and applicability of Berry-Esseen bounds for the density estimator. In this paper, we study a Berry- Esseen type bound for a smoothed version of Grenander estimator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data

Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...

متن کامل

a berry-esseen type bound for the kernel density estimator of length-biased data

length-biased data are widely seen in applications. they are mostly applicable in epidemiological studies or survival analysis in medical researches. here we aim to propose a berry-esseen type bound for the kernel density estimator of this kind of data.the rate of normal convergence in the proposed berry-esseen type theorem is shown to be o(n^(-1/6) ) modulo logarithmic term as n tends to infin...

متن کامل

On Berry-Esseen type bound for least squares estimator for diffusion processes based on discrete observations

The paper is concerned with the distribution of the least squares estimator (LSE) of the drift parameter in the stochastic differential equation (SDE) of small diffusion observed over discrete set of time points. Convergence of the distribution of the least squares estimator to the standard normal distribution with an error bound has been obtained when the discretization step decreases with noi...

متن کامل

On a Berry-Esseen type bound for the maximum likelihood estimator of a parameter for some stochastic partial differential equations

This paper is concerned with the study of the rate of convergence of the distribution of the maximum likelihood estimator (MLE) of parameter appearing linearly in the drift coefficient of two types of stochastic partial differential equations (SPDE’s).

متن کامل

The Berry-esseen Bound for Character Ratios

Let λ be a partition of n chosen from the Plancherel measure of the symmetric group Sn, let χλ(12) be the irreducible character of the symmetric group parameterized by λ evaluated on the transposition (12), and let dim(λ) be the dimension of the irreducible representation parameterized by λ. Fulman recently obtained the convergence rate of O(n−s) for any 0 < s < 1 2 in the central limit theorem...

متن کامل

A Berry-Esseen type bound for the kernel density estimator based on a weakly dependent and randomly left truncated data

In many applications, the available data come from a sampling scheme that causes loss of information in terms of left truncation. In some cases, in addition to left truncation, the data are weakly dependent. In this paper we are interested in deriving the asymptotic normality as well as a Berry-Esseen type bound for the kernel density estimator of left truncated and weakly dependent data.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 1

صفحات  1- 7

تاریخ انتشار 2018-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023